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Abstract

A study has been carried out on Si/SiGe multi-quantum well structures to
determine their applicability as normal incidence infrared detectors in the spectral range
of 2-12 um. The research effort was primarily experimental, however, extensive
calculations were performed to initially explain the experimental data and then used to
design subsequent structures. Multiple quantum well structures grown on both Si[001]
and Si[110] substrates via molecular beam epitaxy were studied by photoluminescence,
absorption, and photoresponse measurements over a wide parameter space. Variables
included quantum well depth and width, well doping, number of wells and growth
temperature. Well widths were varied from 20A to 504, Ge composition from 10% to
60%, boron doping from 1 x 10" cm™to 8 x 10" cm™, number of wells from 5 to 30 and
growth temperature from 550°C to 710°C.

Calculations using k - p theory and the envelope function approximation were
performed to determine the position of the bound states in the wells, the amount of band
mixing and the transition strengths for bound-to-bound transitions for Si[001]/Si,_ Ge,,
Si[110]/81,,Ge, and GaAs/AlGaAs quantum well structures. The Si[110] structures have
more allowed energy bands which are significantly mixed. A comparison was made
between Si1[001]/S1,,Ge,, Si[110]/S1,,Ge, and GaAs/AlGaAs quantum well structures
designed to operate in the 8-12 um region, and all three showed comparable momentum

matrix elements.
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OPTICAL DETECTION PROPERTIES
OF
SILICON-GERMANIUM QUANTUM WELL STRUCTURES

1. Introduction

The Air Force is interested in the development of an infrared (IR) photodetector
that is (a) usable in the 3-5 pm or 8-12 pm atmospheric transmission windows; (b)
operable at temperatures greater than the 20-30 K currently required by bulk material
detectors; and (c), affordable. Bulk mercury cadmium telluride (HgCdTe) is currently the
material of choice to cover this particular wavelength range. Unfortunately, even though
both the government and industry have spent millions of research dollars trying to
improve this material, HgCdTe is still not the optimum solution, because it not only
suffers from poor uniformity and reproducibility, but it contains toxic constituents as
well. The most mature semiconductor material is of course silicon, but bulk silicon is not
conducive to making detectors in the previously mentioned wavelength ranges.
However, quantum well structures made from silicon-germanium (SiGe) alloys may be
used to produce a detector which is responsive in these wavelength regions. Researchers
have exhaustively studied bulk silicon and germanium materials over the last forty years,
and naturally, the silicon-germanium alloy system has also been investigated for

possibilities of novel heterostructures. However, an inability to grow high-quality,
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lattice-mismatched layers, such as Si/Si, Ge, (i.e. Si 0, Ge 5, represents 70% Si and
30% Ge 1n the alloy), has hindered the development of practical devices. Not until the
evolution of molecular beam epitaxy (MBE) in the late 1970s were strained-layer SiGe
alloys grown that could be used in practical devices. In recent years, however, advances
in MBE and chemical vapor deposition (CVD) techniques have led to growth of high
quality Si/Si, Ge, layers. These layers are currently used on a small scale to fabricate
heterojunction bipolar transistors (HBTs) and metal oxide semiconductor field effect
transistors (MOSFETs). Some work has been done on the development of photodetectors
using MBE grown epitaxial layers, but it has not progressed beyond the research level.
There are four primary reasons for considering a quantum well infrared
photodetector (QWIP) made from SiGe alloys. First of all, using quantum wells with
varying alloy compositions and well widths provides great flexibility in tuning the
response of the detector to the desired wavelength range. QWIPs can also be fabricated
to respond in multiple wavelength bands simultaneously by using multiple well width and
well depth combinations on a single device. In addition, QWIPs will operate at 77 K
Secondly, normal incidence detection, which is desirable in any detection scheme, may
be enhanced in SiGe QWIPs. Normal incidence detection eliminates the need for
waveguides or gratings to couple the incident light into the device region, thus reducing
processing steps and cost. Thirdly, the potential for cost reduction in the production of
the detector itself and its associated signal processing circuitry is very large. Most of the
signal processing electronics in use today is based on silicon technology, and silicon

devices will most likely dominate the electronics market in the future because there is no




other material that can match it in performance and cost. As a result, industry is
interested in matching new technology to silicon very-large-scale-integration (VLSI)
circuits. Monolithic integration of Si/Si,,Ge, electro-optic devices with silicon signal-
processing circuitry would eliminate the need for multi-material process lines and hybrid
circuits, both of which significantly increase processing complexity and cost. Finally, a
Si/SiGe QWIP should provide superior uniformity to make IR focal plane arrays (FPAs).
FPAs based on other materials, notably HgCdTe, are currently used for thermal imaging,
guidance, reconnaissance, surveillance, ranging and communication systems, but they
suffer from uniformity and reproducibility problems.

The broad goal of this research was to theoretically and experimentally
characterize Si/Si,  Ge, quantum well heterostructures, grown on Si[110] substrates, to
determine the validity of their use in QWIPs and suitability to Air Force needs. The non-
conventional substrate orientation, Si[110], was chosen with the belief that normal
incidence absorption properties would be enhanced, thus leading to a better and less
expensive photodetector. More specifically, the objective was to determine if
Si[110]/SiGe MQWs could be tuned to respond in the 3-12 um wavelength region and
operate under normal incidence illumination at 77 K.

To obtain those objectives, a wide parameter space of multiple quantum well
material was selected for growth via MBE, with variables in well depth, well width,
doping level, repeat periods, growth temperature and substrate orientation to determine
the usefulness of the SiGe alloy system for QWIPs. Doped and undoped MQWs were

examined with the photoluminescence (PL) technique to determine crystal quality and the
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effects of doping. The doped materials were measured for their infrared absorption (AB)
properties as a function of electric field polarization via Fourier transform spectroscopy
(FTS). After initial attempts at interpreting the absorption data, it became apparent that a
much deeper theoretical understanding of the materials and structures was necessary, and
so appropriate models were developed to predict the dispersion relations in the planes
perpendicular to the growth direction, wave functions, effective masses, oscillator
strengths and Fermi energies. The samples were then reassessed as to their absorption
properties and then photoresponse (PR) measurements were made on the same samples as
a function of sample temperature, and applied bias. Using the extended theoretical
models developed in this dissertation, the experimental data can be qualitatively
explained, with the result that Si/Si, ,Ge, quantum well structures can be shown to be
viable IR detectors which can be grown to elicit the desired response in the desired
wavelength range.

A detailed description of the work performed is found in the following chapters.
Chapter 2 provides background material and contains a discussion of various detector
schemes and the advantages of SiGe QWIPs in particular. An explanation of the
theoretical calculations used to predict the performance of QWIP structures is developed
in Chapter 3 along with a theoretical comparison of a GaAs/AlGaAs structure and a
Si/SiGe structure designed for photodetection at 10 pm. Experimental procedures and
equipment used in making photoluminescence, absorbance, and photoresponse
measurements are described in Chapter 4. Experimental data obtained is presented and

discussed in Chapter 5. Conclusions and recommendations for further work are found in
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Chapter 6 followed by the Appendices and the Bibliography. A separate supplement to
the dissertation, which contains computer programs developed in the theoretical sections,
has also been prepared, and is available on request.

There are several contributions made to the current body of knowledge by this
dissertation. First of all; it presents a computational model which is now available to
treat MQW structures grown on non-conventional orientation substrates, Si[110]
substrates in particular. Before this study, only MQWs grown on [001] substrates could
be fully treated by established theory while [111] oriented MQW s were treated to a lesser
extent in the literature. However, the [110] oriented MQWs were not treated in the
literature and thus required one to return to the fundamental Luttinger-Kohn theory and
develop the entire computational scheme for pertinent calculations on such structures.
The model includes the capability to obtain the dispersion relations, transition strengths
for bound-to-bound transitions and an estimate of the Fermi energy. Secondly, credible
FTIR absorption spectra have been obtained for the first time on [110] SiGe MQWs.
Careful absorption measurements which correlate well with the theoretical predictions
were obtained on a wide range of samples. Thirdly, photoresponse spectra have been
obtained for the first time on [110] SiGe MQWs. The parameter space explored is much
greater than the data presented in the literature on [001] SiGe MQWs. These spectra also
correlate well with theoretical predictions. Finally, Si[110]/SiGe and Si[001]/SiGe
MQWs are shown experimentally to be viable IR detectors. They can be effectively
tuned to cover the 3-12 pm wavelength region, and they operate at 77 K under normal

incidence conditions. It is also shown theoretically that the SiGe QWIPs should have
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performance greater than or equal to GaAs/AlGaAs QWIPs which is the current state-of-

the-art QWIP material.
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2. Background

A. Infrared Photodetectors

Infrared detectors are usually classified as thermal or photon devices. Thermal
detectors operate on the principle that absorption of infrared energy will raise the
temperature in the device causing a change in some material property such as electrical
conductivity. Photon detectors operate on the principle that absorption of a photon will
cause a specific quantum event, such as an interband transition in a semiconductor.’
Photon detectors can be further divided into the following classes: photoconductors,
which generate a current; photovoltaics, which generate a voltage; or photodiodes which
can be operated in either a photoconductive or photovoltaic mode. These devices are
intrinsically faster than thermal detectors and are desirable for processes that require rapid
detection such as imaging, tracking, and surveillance. Infrared (IR) photon detectors are
generally divided into four groups, each with distinct advantages and disadvantages:
intrinsic (non-doped), extrinsic (doped), free-carrier (metal silicide-Schottky barrier),
and quantum well detectors. Figure 2-1 shows the detectivity for various intrinsic and
extrinsic photodiodes and photoconductors. Infrared detectors made from the group II-VI
ternary alloy, mercury-cadmium-teliuride (Hg, ,Cd, Te or MCT), an intrinsic material,
currently dominate the market much like silicon dominates signal processing
applications. Other intrinsic detectors, not as technologically advanced, have been

fabricated from InAs,_ Sb, (InAsSb), Hg, ,Zn,Te (HgZnTe) and Hg, , Mn,Te (HgMnTe).
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Figure 2-1. Detectivity, D*, as a function of wavelength for various photoconductors and
photodiodes (indicated with PD).”

HgCdTe is a direct band gap semiconductor and absorption occurs via interband (valence
band to conduction band) transitions in the bulk material as shown in Figure 2-2. By
varying the Hg to Cd ratio, the band gap of HgCdTe can be tailored to absorb IR radiation
at wavelengths of interest from 1 to 25 um. (see Figure 2-3) Intrinsic photon detectors
like HgCdTe are characterized by high optical absorption coefficients and large quantum
efficiencies and have the added advantage of relatively low thermal generation rates

compared to extrinsic or free-carrier devices. As a result, the operating temperature for
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Figure 2-2. Processes of intrinsic (band-to-band) and extrinsic photoexcitations.?
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Figure 2-3. Room temperature bandgaps, lattice constants, and wavelength cutoffs for
group II1-V, II-VI, and group IV alloy systems.’
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intrinsic detectors is higher than for other types of photon detectors. These desirable
attributes translate to a flexibility in design and the capability to produce IR detectors
with background-limited performance (BLIP) at temperatures greater than 77K.*
HgCdTe does however have significant disadvantages. Millions of research dollars have
been used to fund research on this alloy system over the past thirty years to improve
crystal uniformity of bulk materials and epitaxial layers. Such research has led to
improvements, but the uniformity remains a problem for large array applications at the
longer wavelengths. In addition the materials used in this alloy are highly toxic.

In contrast to the HgCdTe system, extrinsic Si detectors have the advantages of
uniformity, reliability and easy integration with low noise Si readout circuitry, but they
are very limited in flexibility of design. Extrinsic photoconductivity operates on
transitions between bound and free states as shown in Figure 2-2. A photon interacts
with a bound electron at a donor site to produce a free electron and bound hole, or a
photon interacts with a bound hole at a acceptor site to produce a free hole and a bound
electron. The limited flexibility is derived from the small spread in activation energies
associated with dopant impurities. Boron is a commonly used acceptor in silicon with an
activation energy of 44 meV which corresponds to a long-wavelength cutoff of 28 im.
Since extrinsic Si detectors contain no heterojunctions they can be fabricated with
superior uniformity over the wide area which is necessary to fabricate large FPAs.
However, they must be cooled to liquid helium temperatures to minimize thermal
excitation. Such cooling requirements are a significant disadvantage for space based

applications where weight is a primary factor. For both intrinsic HgCdTe and extrinsic Si
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detectors, photoabsorption and carrier transport take place in the bulk semiconductor.
(see Figure 2-4)

Internal photoemission (IP) detectors offer an alternative approach in which
photon absorption takes place in the contact or electrode region, and the resulting hot
carrier is emitted over a potential barrier into a semiconductor depletion region as shown
in Figure 2-5. The resulting charge in the contact is then injected into a charge coupled
device (CCD). These free carrier detectors have generated great interest in the past
decade. Pd,Si/p-Si Schottky photodiodes have been developed for the 1 to 3.5 pm region
while PtSi/p-Si Schottky photodiodes, the most advanced IP detector at this time, have
been demonstrated for use in the 3 to 5 um wavelength region.” While these detectors
have the uniformity and reproducibility necessary for fabrication of 1024 by 1024

element arrays,® they are limited in their spectral range of response. In addition, the
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Figure 2-4. The photoconductor detector. Photogenerated carriers move in response to
the applied voltage V, generating a photocurrent i, proportional to the incident photon
flux.'
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Figure 2-5. Structure and energy band diagram of a Schottky barrier photodiode formed
by deposition a metal on an n-type semiconductor.’

effective quantum efficiency in the 3 to 5 pm range is on the order of 1%. Dark current is
dominated by thermionic emission in internal photoemitters, and so a tradeoff exists
between lower potential barriers, which allow longer wavelength response, and lower
operating temperatures. Attempts have been made to push the response out to 8 pm with
iridium silicides, but these efforts have not been entirely successful. With the advent of
silicon MBE epitaxial growth, Si/SiGe heterojunction internal photoemission (HIP) IR
detectors have been fabricated and demonstrated to exhibit tailored response from 2 to 10
pm with a quantum efficiency on the order of 4%.” The idea for HIP detectors, or free
carrier detectors, was first proposed by Shepherd et al. in 1973® but, due to lack of
growth technology, was not demonstrated until 1990 by Lin et al.” The detection
mechanism involves infrared absorption in the SiGe region followed by internal
photoemission of the excited holes over the effective barrier height. The infrared
absorption occurs primarily through free carrier absorption due to the heavy doping in the

alloy. The HIP structure consists of a degenerately doped p*-SiGe layer as the emitter
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Figure 2-6. (a) Energy -band diagram of the p* \ Si, , Ge,/p-Si HIP detector (b) Structure
of the test device.’

(vs. the metal silicide in the IP) and a p-type Si substrate as the collector. (see Figure 2-6)
Holes are the majority carrier because the band offset between Si and SiGe is almost
entirely in the valence band. The long wavelength cutoff is determined by the effective
barrier height which is in turn determined by the energy difference between the Fermi
level in the SiGe layer and the valence band offset. The valence band offset varies with
Ge concentration in the SiGe layers. In Schottky detectors, photons can excite carriers
from states far below the Fermi energy which do not gain sufficient energy to overcome
the barrier. Only those carriers excited from states near the Fermi energy can exceed the

barrier energy. The quantum efficiency, Y, for internal photoemission is given by

Y=C, (ho - ‘PO) / ho , where C; is the Fowler emission coefficient that depends
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inversely on the Fermi level, and ‘P is the Schottky barrier potential.” In contrast, the
narrow band of absorbing states in the p* Si, Ge, layer of the HIP leads to a sharper turn-
on. According to Lin, “this property avoids a serious weakness of Schottky detectors
where the Fowler’s dependence provides reasonable quantum efficiency only at photon
energies well above the energy barrier, in which a device must be designed with a
significantly lower barrier than the desired energy response, requiring a correspondingly
lower operating temperature to reduce the dark current to acceptable values.” These
devices are attractive because the strong free carrier absorption obtained is not restricted
by the photon polarization field.

There has been interest in using free carrier absorption as the primary absorption
mechanism for infrared detectors.'® The merit of this approach is that free carrier
absorption is not constrained by selection rules and should therefore be sensitive to
normally incident light However, there is sufficient evidence both theoretically and
experimentally (presented in Chapters 3 and 5) to show that quantum well infrared
photodetectors are sensitive to normally incident light. The argument is also made that
free carrier absorption is stronger than intersubband or intrasubband absorption. While
this is undoubtedly true for long wavelengths because the free carrier absorption scales as
the wavelength squared, this is not true for the 3-12 um region as will be shown later in
Chapter 5. Because free carrier absorption depends on phonon interaction to conserve
momentum, the quantum efficiency of a detector based on this approach is intrinsically
lower than that of a detector based on direct transitions such as a quantum well infrared

photodetector.
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Like the HIPs, quantum well infrared photodetectors (QWIPs) also employ
heterojunctions of semiconductor alloys. If the individual wells are placed in close
proximity so that the wave functions of neighboring wells overlap, the structure is called
a superlattice. Conversely, if the wells are spaced far enough apart to minimize
wavefunction overlap, the structure is called a multiple quantum well. Since their
conception by Esaki and Tsu in 1970,'" a wealth of applications for quantum wells and
superlattices have intrigued researchers. However, development of MBE growth
techniques was necessary before high-quality, quantum well structures could be
fabricated. Semiconductor hetero-interfaces exhibit abrupt discontinuities in the local
band structure and thus quantum wells can be made by growing alternating layers of
differing materials. There are four types of quantum well structures as shown in
Figure 2-7. The allowed energies in the well are quantized and their exact values depend
on the well width and the barrier height. In addition, strain induced by lattice mismatch
of the epitaxial growth will shift the energy levels. Quantum well features are also
produced by 8-doping (see Figure 2-8) in which the growth of highly doped well regions
is followed by growth of intrinsic regions.

Absorption in QWIPs takes place between the ground state in the well and a
bound excited state or an excited state in the continuum above the barrier. A photocurrent

is produced when the device is biased to sweep excited carriers out of the well region as
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Figure 2-7. Discontinuities of bandedge energies at four kinds of interfaces: band offsets
(left), band bending and carrier confinement (middle), and superlattices (right)."
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Figure 2-8. Modulation-doped Si-Ge superlattice.”
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(b)

Figure 2-9. (a) Bound-to-continuum transition and (b) bound-to-bound transition in a
quantum well structure under an applied electric field.?

shown in Figure 2-9. According to Manasreh and Brown,” QWIPs are expected to have

the following advantages over other detector types:

1.

A higher degree of uniformity than MCT detectors, which is especially important for
FPAs;

Smaller leakage currents due to suppression of tunneling available in superlattices;

. Lower Auger recombination rates due to substantial splitting of the light- and heavy-

hole bands;

. Technologically mature device fabrication and materials processing techniques

(especially true for Si and GaAs based structures);

. Tunability of upper cutoff wavelengths;

. Radiation hardness due to a very small active region;




7. Ease of crystal growth;
8. Detectivity (D*) comparable to that of HgCdTe at temperatures as high as 80 K;

9. Lower cost due to compatibility with existing signal processing circuitry.

The GaAs/AlGaAs ternary system has been the most extensively studied for IR
detector applications, but other material systems including InGaAs/InAlAs, InAs/GalnSb
and Si/SiGe have been used to achieve wavelength response from 3 to 19 pm.* The great
advantage of using a silicon based detector is that it could be readily matched to silicon
signal processing circuitry. As an added benefit, theoreticians have argued that the
performance of Si/Si, ,Ge, MQWs should surpass the performance of GaAs/AlGaAs
MQW:s and should display enhanced photoabsorption.'*" SiGe structures can be doped
to a higher level than GaAs/AlGaAs structures due to a greater density of states which is,
in turn, determined by larger effective masses and valley degeneracy. Greater doping will
cause the Fermi level to drop in the well due to electron-electron exchange interactions
thus inhibiting thermal generation. Larger effective masses will inhibit tunneling of
electrons and holes through barriers, a problem which has proven significant for
GaAs/AlGaAs structures. However, carriers with higher effective masses have poorer
transport properties. Si/Si; Ge, devices should prove superior for normal incidence
applications in n-type devices. The lowest conduction band minima of n-type
superlattices or quantum wells of indirect materials are not oriented along the growth
direction. Thus, n-type QWIPs exhibit an effective mass anisotropy especially on (110)

oriented growth and show promise of having large optical matrix elements for
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intersubband transitions at normal incidence. An alternative to n-type MQWs are the p-
type MQWs for which the intersubband selection rules intrinsically allow normal
incidence absorption. Szmulowicz and Brown'® argue that in p-type MQWs, a strong
mixing of the valence bands and the conduction band occurs which imposes an s-like
wave function symmetry on the normally p-like valence band wave functions.

Transitions between a pair of bands with s-like and p-like symmetry components are
allowed by selection rules thus creating the possibility of normal incidence absorption. In
addition, the strong mixing of the light and heavy hole valence band states leads to the
non-parabolicity and anisotropy of these bands. Just as in the case of the n-type
structures, where anisotropy leads to off-diagonal effective mass components which can
lead to normal incidence absorption, a similar effect is present in p-type structures. The
exact nature of the optical transitions in p-type materials has proven difficult to model and

is the focus of continued research at this time.
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B. Silicon/Germanium Alloys

Even though the optical and electrical properties of Si/SiGe heterostructures are
not well understood, the individual bulk properties of silicon and germanium are well
understood and are tabulated in many sources. (see Appendix A) Silicon and germanium
are both Column IV elements exhibiting tetrahedral bonding. They both have a diamond
lattice structure which can be viewed as two interpenetrating, face-centered, cubic (FCC)
sublattices with one sublattice displaced from the other by one quarter of the distance
along a diagonal of the cube. (see Figure 2-10) The disadvantage of these materials
individually is that they have indirect bandgaps and therefore are extremely poor optical
emitters with low carrier mobilities compared to GaAs or InP. In addition, their

tetrahedral bonding symmetry causes negligible change in index of refraction over a

2

Figure 2-10. Diamond lattice crystal structure.
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relatively wide range of wavelengths, and as a result, they are not likely candidates for
electro-optic modulators. One of the driving forces behind the development of the SiGe
alloy system came from a desire to push the response of detectors out into the near IR
since optical telecommunication systems use fused-silica-glass fibers with attenuation
minima in the 1.3 to 1.5 pm range. Silicon photodiodes work extremely well in the
visible and out to the Si absorption edge near 1.1pym. The 1.12 ¢V band gap is
sufficiently large to inhibit thermal generation yet small enough to remain sensitive.
Germanium, however, with a bandgap of 0.7 eV is responsive out to 1.5 um, but thermal
generation becomes a problem. Researchers have known for many years that the
fundamental indirect bandgap of bulk Si, ,Ge, alloys spans this wavelength region, and
extensive studies have determined the functional relationship between the alloy band gap
and material composition. Study of the optical properties of Si, ,Ge, alloys began in the
1950s with the work of Johnson and Christian'’ and Levitas et al.'® Braunstein et al"
performed a comprehensive investigation of the absorption edge in Si, ,Ge, alloys in
1958. Paul and Warschauer™ reported in 1959 the optical properties of Si, Ge, alloys
under hydrostatic pressure, thus determining the hydrostatic deformation potential. In
1963 Hensel and Feher?' performed cyclotron resonance measurements on silicon to
determine the deformation potential under uniaxial strain while Murase et al.,”* performed
similar experiments on germanium in 1970. These deformation potentials were used to
determine the band gap in the S1,,Ge, alloys. Several attempts to produce high quality
Si,,Ge, epilayers on single crystal silicon or germanium substrates in the early 1970s

were not successful. In most cases the growth was three dimensional with large numbers
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of threading dislocations, stacking faults and cracks in the layers. Unfortunately no
purposeful work was achieved on the heterostructures until the advent of MBE and CVD
growth techniques. The following paragraphs provide a brief historical sketch on the
development of Si,  Ge, heterostructures in general, and significant advances in the

development of QWIP structures in particular.
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C. Previous Work

A thorough review of the historical development of Si/Si, ,Ge, heterostructures is
placed in Appendix B, but a short summary is presented here. Kasper and co-workers at
Bell Labs grew the first coherently strained Si, ,Ge, epilayers on silicon in 1975. Over
the next ten years, the growth process was improved and fundamental studies on issues
such as critical thickness were performed. An intense flurry of activity in the Si, ,Ge,
field occurred between 1985 and 1992, beginning with the first functioning devices using
the alloy in 1985. In 1989, Chang and James proposed that intersubband transitions in p-
type quantum well structures could lead to normal incidence detection. Researchers at
AT&T Bell Labs, including Bean, Bevk, Luryi, Pearsall, People, Temkin and others
pushed the work in the mid to late eighties, while in the early nineties the work was been
pushed principally by Lin at the Jet Propulsion Lab, Cal Tech and Karunasiri, Lee, Park,
Wang and others at UCLA. Most of the work from the group at UCLA centered on
absorption and photoresponse measurements for MQWs grown on Si[001] substrates.
Although they published a large number of articles, much of the experimental data was
repeated in subsequent papers. The effort has now broken down into smaller efforts with
no single prolific group. The field has not exhaustively or even sufficiently been mined
to consider the wide variation of parameters available to explore. A few groups are still
exploring QWIPs while others are looking at HIPs. No group, other than the group at
AFIT, is currently exploring QWIP devices on the non-conventional Si substrates, and to

date, no one has published any experimental results on p-type Si[110] QWIPs. In general,
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development of theoretical models is far behind the development of MQW structures.
The difficulty in exploring the theory is that the calculations necessary to model the
quantum well structures are very extensive and don’t lend themselves to adequate and
concise representation in the literature. It appears that the growth technology of Si/Si,.
.Ge, heterostructures has sufficiently matured to where any conceivable quantum well
structure can be grown, though growth of short period superlattices has not quite reached
the same level. A deeper understanding of the band offsets, positions of energy levels,
effects of high doping levels, valence band mixing and transport properties is necessary to
achieve optimum performance from the Si, ,Ge, alloy system. For detector applications
in particular, the drive for normal incidence detection necessitates a better theoretical
understanding of device structures grown on (110) oriented substrates and experimental
validation of the theoretical predictions.

This current research effort has placed an emphasis on developing MQWs on
Si[110] substrates. To date, relatively little theoretical work has been done on the bulk
properties of SiGe grown on Si substrates for this orientation,” and no work has been
developed for the p-type MQWs. In addition, no experimental data on p-type structures
exists. In this research, band structures and transition strengths have been developed from
the k « p formalism with an extension into envelope function approximation theory.
Furthermore, a wide parameter space of MQWs grown on Si(110) substrates has been

explored using photoluminescence, absorption, and photoresponse measurements.
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3. Theoretical Model For Valence Bands In Si/Si, ,Ge, Quantum
Wells

A. Introduction

A theoretical understanding of the Si/S1, yGey quantum well systems under
investigation is an essential requirement for guiding and interpreting experimental
observations. Values calculated from theoretical models can help explain experimental
data and can facilitate the design of new structures. In this chapter, existing theoretical
models are adapted to describe strained quantum wells grown along the crystalline [110]
direction. Most of the theory for quantum well structures presented in the literature has
been developed for the GaAs/AlGaAs system with the growth axis in the [001] direction,
using k-p theory. This theory is applicable to any material system with a growth axis in
the [001] direction provided the necessary constants are available. For example, the
model used for GaAs/AlGaAs is easily extended to include strain effects and then
adapted to describe a SiGe alloy system with the growth axis along the [001] direction.
However, the model for quantum well structures with the growth axis in the [110]
direction is not in the literature for either GaAs/AlGaAs or Si/SiGe. Furthermore, the
model for [001] material cannot be modified by simply changing qonstants to obtain a
[110] model. The {110] model must be completely derived using the basic elements of
k-p theory. One of the primary contributions of this work is the detailed development of
the expressions for the total 6 x 6 Hamiltonian describing strained Si, yGey in the [110]

direction. These expressions for strained bulk material are then used in the envelope
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function approximation to obtain dispersion relations for [110] quantum well structures.
Dispersion relations and band decompositions for Si[110] /SiGe quantum well structures
are not in the literature and are presented here for the first time. The [110] dispersion
relations differ both quantitatively and qualitatively from the dispersion relations for
[001] material.

For historical perspective it is necessary to mention a few of the seminal papers in
the development of band theory, particular as they apply to SiGe alloys. The roots of
k -p theory, the primary method found in the literature for determining quantum well
band structures, are found in the work performed in the mid 1950’s by Luttinger and
Kohn, Kane, and Dresselhaus, Kip and Kittel using degenerate perturbation theory. 2* %%
In 1963, Hasegawa authored a paper discussing the valence band structure in silicon
single crystals subjected to a uniaxial stress.”’ In the paper he wrote out explicit
equations for the 6 x 6 k -p and strain Hamiltonians for the [001] direction in terms of the
orbital angular momentum operators. Hensel and Feher also published a paper in 1963 in
which they gave a general form of a 4 x 4 Hamiltonian, in terms of the total angular
momentum operator, for the three primary directions in the cubic crystal [001], [110], and
[111].** However, since they used the |j m;) representation of the total angular
momentum operator, J, instead of the orbital angular momentum operator, L, the
coupling between the split-off band and the heavy hole and light hole bands are not
properly accounted for. (Note that hereafter for simplicity of notation, m; will be written

as m). In 1966 Cardona and Pollak published the band structure for Si and Ge calculated

via a 15 band, k-p model along the [001] and [111] directions.”” Ma, Wang and
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Schulman calculated the band structure of coherently grown Si, ,Ge, alloys on different
orientation substrates in 1993 using a semi-empirical tight-binding method.*

The modeling of the band structure of quantum well materials did not begin to
develop until the early 1980’s or about the time that quantum well structures could be
grown via MBE and MOCVD. Since [100] substrates are the most common material to
grow on, a very large majority of the models were developed with the [001] growth
direction in mind. Two methods for modeling the quantum well energy levels which are
microscopic in nature are the empirical tight-binding approach and the pseudopotential
approach. The empirical tight-binding approach begins with a series of energies
characteristic of the atomic sp’ bonds which connect one atom to another. The
wavefunction is determined by considering the consecutive addition of atoms. In 1985,
Schulman and Chang used tight-binding equations to point out that valence band mixing
is significant in GaAs/AlGaAs quantum wells, and that dipole-allowed transitions are
allowed between all pairs of valence and conduction subbands.’® In the pseudopotential
formalism, consecutive layers of material which form the quantum well are treated as
perturbations to the bulk. In 1986, Smith and Mailhot used an empirical pseudopotential
to calculate quantum well band structures.” The advantage of these approaches is that
they describe the band structure throughout the entire zone. However, they are somewhat
computationally intensive.

A third approach to modeling the energy levels, called the envelope function
approximation (EFA), was adapted from effective mass theory which had been used for

more than 30 years to calculate the energy levels of impurities in a crystal. A detailed
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discussion of the EFA is presented in Section E of this chapter. In this adaptation, the
quantum wells, rather than impurities, break the translational symmetry of the lattice. In
the absence of translational symmetry, the electronic wavefunction in the growth
direction is given by the product of the periodic part of the Bloch function at zone center
together with an envelope function. Early applications of the EFA for analyzing QW
structures are found in the work of White and Sham,” Altarelli,** Schuurmans and
t’Hooft,” and Bastard.’**’ The envelope function approximation is versatile and readily
adaptable to include strain effects. Furthermore, the energy levels of interest for actual
devices are near high symmetry points, such as zone center, for which the EFA compares
favorably with the tight-binding method.*® Chang and James,* were the first to use
envelope function theory on GaAs/AlGaAs quantum wells to show that normal incidence
absorption could be obtained in p-type MQWs using a 4 x 4 representation of the
quantum well Hamiltonian. Their approach was later refined and expanded to an 8 x 8
representation of the quantum well Hamiltonian for an unstrained GaAs/AlGaAs system
by Szmulowicz.* These models use momentum matrix elements to determine the
strength of the quantum well transitions. However, as in the case of the bulk
Hamiltonian, these momentum matrix elements used by Chang and James and
Szmulowicz for [001] material cannot be simply modified to describe material grown
along different crystallographic directions. Thus the momentum matrix elements for
[110] material are also derived and presented here for the first time.

Once the machinery for deriving the [110] bulk Hamiltonian and momentum

matrix elements is developed, it may be used to rederive the [001] Hamiltonian and
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momentum matrix elements to verify the procedure, as well as to analyze QW systems
grown along any direction. Although the steps needed to derive the bulk Hamiltonian for
arbitrary growth directions are scattered throughout the literature they are not collected in
a single paper or book. Therefore, it seems pertinent to outline all the steps in this
document, and so the remainder of this chapter is organized as follows. Unstrained bulk

energy band structures are discussed in Section B. These structures are obtained by

considering the Luttinger-Kohn form of the k-p Hamiltonian, H, ,, where E=E(K) is given
by the eigenvalues of a 6 x 6 matrix representation of the Hamiltonian. The effects of
strain are discussed in Section C where a separate Hamiltonian, H,;,, is formulated. In
addition, a Hamiltonian to account for spin-orbit effects, H,,, and a potential energy term,
V.o are also considered. In Section D, a rough approximation to the bound energy
levels is determined by considering the heavy hole, light hole and split-off bands
independently. This simple calculation assumes that the valence bands are decoupled
and that the wave function can be approximated by a simple plane wave. In fact, the
bands are coupled and the wave function is not adequately approximated by a plane
wave. These deficiencies are corrected by using envelope function approximation theory
(EFA) which is developed in Section E. The EFA formalism shows that although the
uncoupled band approach provides an elementary description of Si[001] MQWs, it is not
adequate for Si[110] MQWs. A discussion of the transition strengths is presented in
Section F, and a discussion of the approximations used to find the Fermi energy is in
Section G. The computational models are used in Section H to make comparisons

between [110] and [001] Si/SiGe and [001] GaAs/AlGaAs quantum well structures that
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will operate in the 10 um region. Finally in Section I, values for the zone center energy

levels are tabulated using the simple analysis and the more sophisticated EFA analysis.




B. Si, Ge, Unstrained, Bulk Band Structure

As in most solid state problems, the analysis of the electronic and optical
properties of quantum well structures begins with a determination of the energy band
structure, E=E(K), also called the dispersion relations. Dispersion relations for the thin,
epitaxial Si, ,Ge, layers used in QWIP structures are difficult to obtain for several
reasons. First, most theoretical models require empirically determined data as input.
Unfortunately, little experimental determination of the bulk properties of Si, ,Ge, alloys
has been made even though the bulk properties are well known for Si and Ge
individually. As a result, most parameters for bulk Si, ,Ge, are obtained by linear
interpolation between the Si and Ge values. Second, theoretical characterization of lattice
mismatched, Si/Si, ,Ge, heterostructures is further complicated because epitaxial growth
can proceed as strained, relaxed, or partially relaxed. Strained growth occurs because
silicon and germanium have lattice constants which differ by 4.2 %, (ag; = 5.431 4, a5, =
5.657 R) which is very large for epitaxial growth. As more germanium is introduced into
the alloy, the lattice becomes more distorted thus causing more strain. The introduction
of strain reduces symmetry in the crystal, partially lifting the degeneracy in the valence
bands at the center of the Brillouin zone (BZ). In addition, the energy bands become
nonparabolic and anisotropic, thereby inducing a change in the effective masses. Once
bulk Si and strained bulk Si,  Ge, properties are understood, the bulk pictures for the

barrier region and well region can be combined to model a quantum well.




The k-p method for obtaining band structures was chosen for this research

primarily for its ease of implementation. In the k-p method, the band structure in the
vicinity of a high symmetry point in k space, such as the gamma point, I', depends on a
small number of parameters (band gap, effective masses, and spin-orbit splitting) which
may be determined by experiment. It is particularly well suited to include external
perturbations like strain and can be readily adapted to heterostructures. This method has
proven to be an effective tool for the study of energy bands and wave functions for over
40 years.***"* The accuracy of the approach may also be determined by comparison with
methods that provide a more global description of the band structure such as the tight
binding method. Eppenga has shown that the confined energies and transition strengths
derived from k-p theory applied to quantum wells, are in excellent agreement with results
obtained from tight-binding theory.*®

The following section is a brief derivation of the matrix representation of the bulk
Hamiltonian. The reader is referred to Luttinger and Kohn** for more details. They
developed a simple matrix expression for the Hamiltonian of bulk semiconductors from
which the band structure close to the Brillouin zone center can be obtained. For systems
with cubic (O,) symmetry, the matrix may be further simplified and expressed as a
function of angular momentum matrices, the wavevector k, and empirically determined
parameters referred to as Luttinger coefficients. The Luttinger coefficients, or effective
mass parameters, are determined through cyclotron resonance measurements.

The analysis of the bulk dispersion relations begins with Schrodinger’s equation

for an electron moving in a three dimensional lattice,
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HY,_ (r) = {i + V(r)}‘Pnk(r) =E, (k¥,(r), (3-1)

where p=-i4V, and V(r) is an effective potential with the periodicity of the lattice. Using

Bloch’s theorem, the eigenstates, ‘¥, (r), of the Hamiltonian may be expressed as

¥, (r) = (r|¥, ) = exp{ik -r} u, (r), (3-2)

where u,,(r) has the periodicity of the lattice, k lies in the first BZ, and n is a band index.
The W,,(r) are a complete set of basis vectors within which any function of position may
be expanded. Luttinger and Kohn (LK) have proven that for any fixed value of k=k,, the

states

X (r) = (r|nk) = explik -r}u,, (r) (3-3)

also form a complete set of basis vectors. As a matter of convenience and without loss of
generality, Kk, is set to zero. Matrix elements of the Hamiltonian in the X ,(r)—[nk)
representation are given by

H,. 8(k'-k) = (n'k'|H| nk)
= Idr X (r)HX , (r)

= [dr expfi(k - k')}un.o(r){En(O) SRR 22;2 }uno(r) (3-4)
_ h2k2 hkap(;‘n "
= {[En(0)+ =~ )SM. +a§,y,27m }S(k k)




where the p,.,* are momentum matrix elements given by,

pl, = NIdr u,(r)p,u,,(r). (3-3)

The integral in Eq 3-5 is over the unit cell and N is a normalization constant.

Eq 3-4 is exact for all values of k. However, to determine the dispersion relations,
E, (Kk), all of the p,., matrix elements must be computed and the resulting matrix
representation of the Hamiltonian diagonalized. To avoid this prohibitively difficult
procedure, the k-p method assumes that k-k; is a small quantity and that the Hamiltonian
in Eq 3-4 is diagonalized by neglecting terms of order (k-k,)* and higher. This is
accomplished by a similarity transformation of the Hamiltonian,

H'=U"HU

= exp{— S} Hexp{S} (3-6)
=H+[H,S]+|[H,S]s]/2 +..

where a Taylor’s series expansion of U=exp{S} has been used to formulate an
approximate Hamiltonian H'. For a suitable choice of S in the absence of degeneracy, LK
show that to second order in (k-k,) the Hamiltonian H' is given by,

H,.5(k'-k) = (n'k'|H'|nk)
= (n'K'|exp{S} H exp {S}| nk) (3-7)

thz hzkak p:'n p:u"pﬁ"n
={(E.1(0)+ 2m)+Zﬁl =2 2 18,8 (k'K)
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where diagonal terms of order (k-k,)’ and off diagonal terms of order (k-k,)* have been

neglected. For future reference, it is convenient to define H' = H, + H, , where

21,2

'k & . 8(k'—k) 3-8
m n'n - (—)

(n'K'[H |nk) = {En(o) +

and

RINa) thakB p?lln"pﬁ"n '
(n'k'|f,, |nk) = Z;. T EE 5. 8(k'-k). (39

It is useful to note that the |nk) representation of the Hamiltonian H' is diagonal and

yields the dispersion relations for a non-degenerate system,

E_ (k)= E(0)+ o Z Ko “Zp“"p“ (3-10)

n;tn

A derivation of the effective mass theorem is then obtained by comparing like powers of
k in Eq 3-10 and in a Taylor’s series expansion of E, (k) about k, = 0.

For Si and Ge, the I point is at zone center and the choice of k=0 applies.
However, at zone center in the absence of spin-orbit coupling and strain, the eigenvalues
of H' are degenerate. In the presence of degeneracy, off diagonal elements of H' in the
degenerate subspace cannot be neglected. As a result, the |nk) representation of the

Hamiltonian, H', becomes block diagonal where matrix elements of H, remain unchanged

and matrix elements of H ., are given by
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A Pk, o phal,
(n'kK’ ‘H'k-p |nk)= {2 2 : Elm_ E ) }S(k'_k) (3-11)

of n"#n,n'

where n’ and n label degenerate eigenstates, E (k=0) is the degenerate eigenvalue, and the
dimension of the block diagonal matrix is determined by the number of degenerate
eigenvectors. Because the direct bandgaps of Si and Si, ,Ge, are relatively large and the
spin-orbit energy is relatively small, the three doubly degenerate valence bands will be
the focus of attention. In the absence of spin-orbit coupling, six degenerate basis vectors
and a 6 x 6 representation of H' = H, + H, , are obtained. Matrix elements of the 6 x 6

representation of the bulk Hamiltonian are given by the sum of Eq 3-8 and Eq 3-11,

H,,8(k'-k) = (n'k'[{, + /' |nk)

21,2 2% a _p 3-12
=[{En(o>+h : }sm-+{2hm“zk“ ) ;’"“"_pgi}ak'-k)} o

2m of n"#n,n'

where the prime on H has been omitted to simplify the notation. Eq 3-12 provides the
most general form for matrix elements of the bulk Hamiltonian, however H mus’; also be
invariant under rotations of the symmetric point group of the lattice. This constrains the
Hamiltonian to be a linear combination of invariant operators, V,_*%, of the symmetric

point group of the lattice,

A= T, o1
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where the h,** are expansion coefficients. Using the face centered cubic symmetry of the
Si and Ge lattice, LK and later Luttinger* show that: 1) there are three terms in the
expansion of H given by Eq 3-13, 2) the three expansion coefficients, h ¢, may be
determined by computing momentum matrix elements given by Eq 3-5, or directly from
the three empirically determined Luttinger parameters 7,, and 3) the invariant operators,
V., of the cubic group are expressed as the product of second order polynomials of the
angular momentum operators L,, L, and L, together with second order polynomials of k,,

k,, and k,. The symmetry defined invariant Hamiltonian is then given by

(3-14)

where, I7,L,, L, and L, are the orbital angular momentum operators, y,, v,, 7;, are

empirically determined Luttinger coefficients, k. = (k, -k, +k,k)/2 are quadratic
polynomials of the components of the wave vector k, L, = (L,-L, + L,-L,)/2 are anti-
commutators of the angular momentum operators, and c.p. designates cyclic permutations
with respect to the indices x,y,z. The beauty of this approach is that the bulk Hamiltonian
in Eq 3-14 is expressed in terms of the Luttinger coefficients which are determined
experimentally through cyclotron resonance experiments. With this method,
computationally intensive calculations of the Bloch functions used to determine the

momentum matrix elements are avoided.
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The 6 x 6 matrix representation of the bulk Si or Si, ,Ge, Hamiltonian is obtained
from the 6 x 6 representation of the angular momentum operators where each of the

angular momentum operators are represented in the [nk) basis. It is convenient to replace

the basis index n with the labels [, m, s, and m, which are used to identify the six

degenerate valence subbands. With this labeling scheme, |nk) = |l m, s m k), where /
equals 1, m, may equal 1,0, and -1, s equals *, and m, has the values £ *s. The 6 x 6

matrix representation of the angular momentum operators in the [nk) = |1 m, s m, k) basis 3

are given by the following.

001000 0 0
000100 0 0
Al1 00010 nll o
L=70o 100 01 Ly=7lo 1
001000 0 0
00010 0] 0 0
[1 0 0 0 0 0]
01000 0
L _0000 0 0 g
:="M0o 000 0 0
0000 -1 0
0000 0 —1]

-1

S = O O O

o O O O O

o © O O = O

0

—_— O O O

S O O = O O

0

SO O = O O O

O = O O O O

0l

— O O O O O

Replacing the angular momentum operators in Eq 3-14 by their corresponding

(3-15)

representations in Eq 3-15 yields a 6 x 6 [nk) representation of the bulk Hamiltonian
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H=H, +H,,. To incorporate the physically important effects of spin-orbit coupling into
the k-p model, an additional Hamiltonian, H,,, added to H=H, + H,,. Since the spin-
orbit energy is generally larger than other perturbation terms, it is useful to represent H =
H, + H, , in the eigenbasis of the spin-orbit Hamiltonian, H,. Since H,, is diagonal in the
| j mKk) basis, the matrix representation of H = H,, + H, , is transformed from the

[l m, s m, k) basis to the |j m k) using

|jmk> = Z}lml smsk><lm1 sm Kk

>l l1m smKk)

m; m; m;
mymg

jmk> =
(3-16)

1 s j
mlmsmj

where C are the Clebsch-Gordan coefficients. The transformation matrix from the

[l m, s m, k) representation to the |j m k) representation is given by

0

0
N
B \/O> . (3-17)

0
0 -
0

NN

CG =

N

° o ° e
R

SO ©O o O o =
— o o o O O

0

An alternative phase convention was developed by Luttinger and Kohn (LK) and has
become the standard in the literature. The LK transformation matrix has the following

form.
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10 0 0 0 0
0 iy o o0 —% 0
0 —i % 0 0 % 0
S P o0 0 iy e
0 0 Lo o -+ %
00 0 i 0 0 |

To obtain H = H,, + H, , in the |j m K) representation, each of the matrices in Eq 3-15 are
transformed to the |j m k) basis using

L, ~LK'L LK
L=LK"'L, LK (3-19)
L,=LK"L, LK

and then substituted into Eq 3-14.

Eq 3-14 was derived using group theory arguments in a symmetry-adapted
coordinate system. Therefore, to describe quantum well structures grown in a direction
that is not aligned with the symmetry adapted coordinate system, the L operators must be
rotated from the symmetry adapted coordinate system to a coordinate system with a z-
axis aligned with the growth axis of interest. Primary growth directions of interest are
designated by their Miller indices [001], [110], or [111], however any z-axis direction can
be chosen. The three primary coordinate systems are shown in Figure 3-1. Using the
cubic symmetry adapted coordinates as a reference system, the L and & operators are
rotated using R(6,¢) into the [001], [110] and [111] coordinates. (A Mathematica™
program has been written to perform these rotations and determine the k-p matrix

elements for any orientation.)* The rotation operator, R(6,¢), is given by
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4

> [010]

[110]

[111]

[-110]

Figure 3-1. The () [001], (b) [110], and (c) [111] coordinates relative to the [001]
coordinate system.
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cosOcosqp —sing sinfcose
R(e, (p) =| cosOsing cosp sinOsing (3-20)
—sinf 0 cosf

where rotations to the [001], [110], and [111] coordinates are given by 6=0, ¢p=n/4;
0=n/2, p=n/4; and O=arcos(1/ \3), p=n/4 respectively. The rotated angular momentum

operators are given by

L. L, — L, sing + L, coso coso + L, sin® cosg
L/'|=R-|L,|=| Ljcoso +L,, cosO sing +L,sinOsing |.  (3-21)
L' L, ~L,,sin6 + L, cos®

In a similar fashion, components of & are given by,

k.. k., -k, sing +k,, cosB cosp +k,, sinB cosop
k,'[=R-|k, [=| k,cosp +k,, cos0 sing +k,, sinb sing (3-22)
k' k,, -k, sin@ +k, cosd

Substituting the 6 x 6 matrix representations of L,, L,, and L, into Eq 3-14, yields the
matrix representation of the Hamiltonian H = H, + H, , in the [j m k) basis for a particular

value of k(k,, k,, k,) as follows.
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m = 3/2, 1/2, -1/2,
H o B
a L 0
. B 0 L
H=-
2m0 0 B* —(X,*
i, D \F
— =0 -1 1,/ 700
V2 V2 2
, 3, D
2 o -1
1\/—[3 1\/;oc 1\/5

-3/2,

where for each orientation the matrix elements have the following values.

[001] growth direction

H=(k2+k +k) 7, + (k’+k>-2k) 7,
L=k’ +k>+k)y, - (k2+k’-2k) 7,
S=(k,” + k2 + k) v,

a=2iV[3] (k-ik) k, 73

B=[3] (kK )y, - 2 i k K, 13)

D=L-H

[110] growth direction

H:(kx2 + ]%'2 + kzz) Y- (kx2 -2 ky2 + kzz) Y2 12+ 3(kx2 - kzz) Y3/2

3-19
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L=(k,” +k+k2) v + (& -2k’ + k27, /2 - 3(k?-k2) 13/
S=(k,” +k2+k) v,

o=21iV[3] (k1 -ik, 1) k,

B=V[3)2((k 2k + k)1, + (k2 -4ik Kk, k2)y5)

D=L-H

[111] growth direction
H=(k’+k’+ k)7 + (kM k- 2k,
L=(k +k + k)7 - &+ k2K,

S:(kx2 + ky2 + kzz) 'Yl

a=\[313( (-V[2]k. - 2 i V[21k, k, + V[2] k-4 ik k, -4k k)7, +
(VI2Jk,? +2i V[21k, k, - V[21k, 2k k, -2k, k) 75)
B=[313((k. - 2k k, - k221 V[2]k, k, +2 V[2] k, k) v, +
2k - 2ik, k- k42 i V[21k k, - V[21k k) 7,

D=L-H.

The matrix representation of H = H, + H, , for the [001] and [111] growth directions were
derived using the prescription outlined above and they agree exactly with other published
results.”“ However, the matrix elements of the H=H, + H, , for growth along the [110]

direction are new results. Ikonic*” has previously published the matrix elements of a 4 x 4
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k-p Hamiltonian for all three principle directions, however, he neglected the physically
important matrix elements that couple the j=3/2 states with the j=1/2 states.

In the | m k) representation, the spin-orbit Hamiltonian, H,,, has a rather simple

502

diagonal form for all growth directions,

[0 000 0 0]
0000 0 O
0000 0 O
Ho=l0000 0 o (3-24)
0000 -A 0
0000 0 -A]

where A is the empirically determined value of the spin-orbit energy. The total bulk

Hamiltonian is then written in the following way.

H,, =H +H,. +H_ (3-25)

total kep

The 6-fold degenerate energy eigenvalue of H, is the valence band-edge energy. By
convention, this energy value is set to 0. By diagonalizing the total Hamiltonian, three
doubly degenerate eigenvalues are obtained. E, = E, (k) where E,, denotes heavy hole
energies, E, ; denotes light hole energies, and Eg, denotes éplit—off energies. The bulk

dispersion relations are determined by evaluating the E, (k) over a range of k values.
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C. The Effects of Strain on Bulk Energy Levels

Scientists have studied the effects of strain on semiconductors for over 40 years.
The most notable studies were performed by Brooks,* Herring and Vogt,” Kleiner and
Roth,*® Hensel and Feher,?® Hasegawa,” Kane,” Balsev,” Pollack,” and Bir and Pikus.**
These experimentalists built on the band structure and effective mass theory developed
by Kane, Kohn, and Luttinger in the 1950’s. Pioneers in the growth of strained materials
include Van der Merwe® and Jesser ef al.*® who determined the existence of a maximum
or critical film thickness above which defects form to partially relieve the strain. Early
work on Si,,Ge, multi-layer structures was performed by Bean et al.,’’ Chern et al.,”®
Mattthews and Blakeslee, People et al.,® and Van der Leur. " Strained (also known as
commensurate, coherent, or pseudomorphic) growth occurs when the lattice mismatch is
accommodated by tetragonal distortion of the epilayers on the silicon substrate. In the
minimum energy configuration the atoms maintain full bonding with the silicon by
compressing together parallel to the growth interface and spreading apart perpendicular to
the growth interface as illustrated in Figure 3-2. On the left side of the figure both
materials are represented in their undistorted form. The bottom right shows strained layer
growth typical of thin layers where the epitaxial layer compresses in the growth plane to
match the substrate lattice atomic spacing which forces an extension in the growth
direction. The top right shows misfit dislocation growth typical of thick mismatched
layers where the epitaxial layer has returned to its bulk, undistorted form. All

configurations of strain can be decomposed into two parts; (a) a hydrostatic component,
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Figure 3-2. Schematic diagram representing strained layer epitaxy

which gives rise to a volume change without changing the crystal symmetry, and (b) the
anisotropic component which reduces the symmetry of the strain free lattice. In the
absence of spin-orbit coupling, diamond and zincblende semiconductors have a six-fold
degenerate valence band dispersion relation at k=0, in the absence of spin. Spin-orbit
interaction partially lifts the degeneracy into a four-fold degenerate p,, multiplet (where
j=3/2, m; =%3/2, £1/2) and a two-fold degenerate p,, doublet (where j=1/2, m; =+1/2).
When uniaxial strain is applied to the crystal, the j=3/2 multiplet splits further into a pair

of doublets. If the strain causes compression of the lattice then the light-hole band will
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move closer in energy to the split-off band. If the strain causes extension, then the heavy-
hole band will move closer in energy to the split-off band as shown in Figure 3-3. For the
case of SiGe alloys grown on Si substrates, extension occurs in the growth direction and
compression occurs in the plane perpendicular to the growth axis. The physical effects of
strain in MQW structures are described by the strain Hamiltonian, H,,,. The strain
Hamiltonian used to describe the strain effects on the band edges was developed
independently in 1959 by Kleiner and Roth® and Pikus and Bir.** Unfortunately their
notation for the deformation potentials differed and has remained a source of confusion

and error for subsequent authors over the

My (M)
[yl
tem)
—1
Eol3
Ep+A
e "o Eol2)

J=3/2 y / "
my=t3/2 /2 z
ARG PR N
I/2 my=%1f2 kx
iy (ry 13 N z

/ Ky
kx
Stress
Axis

Figure 3-3. Valence bands (j=3/2, m=%3/2.+1/2, and j=1/2, m=*1/2) and the lowest
conduction band in diamond and zincblende-type semiconductors for unstrained (left)
and strained (right) crystals.®

3-24




years. This document will use only the Kleiner and Roth notation. Just as in the case of

the k-p Hamiltonian, the strain Hamiltonian, H_,;,, can be expanded in terms of the

strain?

orbital angular momentum operators I*, L, , L ,andL,.

- ~ 1A ~
Hstrain = Dl(exx + Cyy + ezz)1 + 2’]:)2 |:(L2x - 5 LZ) SN ij| + 2D3[(ny )ny + Cp]

(3-26)

where, I’,L, L ,and L, are the orbital angular momentum operators, D,, D,, and D, are

the deformation potentials, e,,, €,,, etc. are the conventional strain components, and c.p.

Yy
designates cyclic permutations with respect to the indices x,y,z. The valence band
deformation potentials D,, D,, and D, are empirically obtained and a wide range of values
are reported in the literature. D, gives the shift of the center of gravity of the entire
valence band, D, represents the valence band splitting along the [001] direction and, D,
represents the splitting along the [111] direction.” (Valence band deformation potentials
are generally defined in terms of the coﬁventional strain components, ¢; while the
conduction band uniaxial splittings are generally defined in terms of strain tensor
components S; = 1/2 e;(1+5;).) As the strained epitaxial growth proceeds along different
directions in the crystal, the corresponding wave vectors, strain tensor, and angular
operators must be rotated as was done in Section B for H=H, + H,,.** The 6 x 6 li mk)
is given by:

representation of the strain Hamiltonian, H

strain?
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m; =3/2, 1/2, -1/2, -3/2, 1/2, -1/2
—el +e, 0 e, 0 0 —i\/ieg
0 e-e O e, —iv2e, O
S 0 e-e, O 0 —iv2e, (3-27a)
N ' e, 0 e +e, —iv2e, 0
0 i\/iez 0 iv2e, e 0
_i«/ie3 0 i\/ie2 0 0 e |

where matrix elements ¢, €, and e, for each of the primary growth directions are given as
follows:

[001]9 e1=D1(2'e)(x +ezz)’ 62=2/3 D2 (ezz_exx)’ e3:03
[110]’ elle(zexx +ezz)’ e2=-])2(ezz"exx)/3 + D3 exy/2 (3_27b)

e,=-D,(e,-e,.)/\3 +D,(e, )(2 V3),
[111]; =D, e, &=D; ¢€,,, €,=0,

where the values of e,,, €,,, and ¢, also depend on the orientation. Equations 3-27a and
3-27b have been independently derived and are in complete agreement with People.”” To
find the strain induced energy shifts of the valence band states, the eigenvalues of the
strain Hamiltonian must be obtained where the deformation potentials and strain tensor
components have been linearly interpolated between values for Si and Ge. The amount
of strain induced shift depends on the crystal orientation, Ge composition, and particular
band as illustrated in Figure 3-4. The strain shift data calculated for the [001] and [111]
growth directions agrees well with strain shift data in the literature.®> % The strain shift
data calculated for [110] growth direction has not been previously published and it falls

between the [100] and [111] data for all three bands.

The total Hamiltonian including spin-orbit and strain terms can now be written as
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Figure 3-4. Strain induced energy shift for all three valence bands ag 3 function of
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H, ,=H,+H, +H,_,+H (3-28)

total k-p strain

Dispersion relations, E=E(k), that include the effects of spin-orbit coupling and strain are
determined by diagonalizing the total Hamiltonian, H,,,, given by Eq 3-28. Simple
analytic expressions for E,(k) (where A = HH, LH and SO labels), are found for the [001]
and [111] directions since the sixth order secular equation of H,, is easily factored into
three quadratic equations. However, factorization of the secular equation for the [110]
direction is more difficult and the resulting analytic expressions for the eigenvalues are
prohibitively long.** As was previously noted, these expressions are not published in the
literature. The experimentalist cannot simply look up eigenvalue expressions for strained
[110] growth and plug in numbers to obtain dispersion relations. However, having
derived the proper expression for H,,,,, dispersion relations, E,(k), for the [110] direction
are obtained. From the dispersion relations, the hole effective masses, m,*, at k=0 can be

computed numerically as follows.

* _hz
m, =—S———
’ 62E’jm(k)
ak* i

(3-29)

The effective mass values along the growth direction for the different substrate
orientations are presented graphically as a function of Ge composition in Figure 3-5.
Calculation of m,* in the [001] and [111] directions agree with the values calculated by

Kahan,® however, the LH[001] curve varies slightly with Karunasiri.* It is difficult to
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ascertain the reason for the discrepancy because Karunasiri did not publish the details of
his calculations. The [110] data presented in Figure 3-5 is a new contribution. Just as in
the case of the strain shifted energies, this [110] data falls between the [001] and [111]
data. A quantitative check of Figure 3-5 is available for 0.0 percent Ge. At zone center,
the longitudinal, heavy hole effective mass my,*, is expected to be inversely

proportional to the sum of Luttinger parameters multiplying the k, terms in the

<% % k IH‘ % % k> matrix element in Eq 3-23. (i.e., m* gy [001]21/(y, -27,), m* gy
[110]=1/(y, -y,/2-3Y5/2), m* gy, [111]=1/(y, -2y,).) Using the Luttinger parameters of Si
tabulated in Appendix A, specific values of the heavy hole masses are given by m* ;)
[001]=0.29, m* 4 [110]20.53, and m™* gy, [111]=0.75. These numbers are in excellent
agreement with the plots of Figure 3-5 for 0.0 percent Ge. These plots can also be
compared with experimental data for 0.0 percent Ge. By taking the average of the values
for the three orientations, it is determined that the heavy hole effective mass (m*/m,) is
0.53, and the light hole effective mass is 0.16. This is in excellent agreement with
experimentally obtained values of 0.50 and 0.16 for heavy hole and light hole
respectively.®

Dispersions relations, E,(k), given by the eigenvalues of the bulk Hamiltonian are

shown in Figure 3-6. Part (a) shows the dispersion relations of H,_,, =H, + H,, where

kep
spin-orbit and strain have been neglected. All three bands are degenerate at zone center

where the zone center energy, E, (k=0), is set to zero. Part (b) shows the effect of adding

the spin-orbit perturbation (H,,, =H, + H,.,+ H,;). At zone center the split-off band is
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lowered by the spin-orbit energy, A, while the heavy hole and light hole bands are still
degenerate. Part (c) shows the combined effect of spin-orbit and strain splitting (Hy,
=H, + H,,+ H,, ¥H;,). All three bands have distinct energies at zone center. The degree
of separation and the amount of warping of the bands depends on the Ge concentration.
Part (c) agrees well with bulk, strained band structures computed with the tight-binding

method by Ma and Wang®® which validates the approach used in this document.
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D. A Simple Quantum Well Analysis

A single quantum well is made by sandwiching a planar well region of Si, ,Ge,
alloy between two barrier regions of pure Si. The resulting heterojunctions exhibit abrupt
discontinuities, better known as band offsets, in the local band structure. The band offset,
is determined by the local chemistry on an atomic scale and is generally determined
experimentally. Holes moving in the well region parallel to the x,y plane are subject only
to the periodic potential of the bulk Si, ,Ge,. Holes moving in the growth, or z direction
encounter the abrupt band offset as they move from the well region to the barrier region.
In a simple theoretical treatment of the optical and electronic properties of the
heterostructure, the band offset at zone center (k=0) is used to define the depth of a
simple one dimensional square well. For strained SiGe alloys on Si substrates,
approximately 80-90 percent of the offset occurs in the valence band, which indicates
their usefulness as p-type devices. (A type I bandedge discontinuity is assumed for SiGe
alloys grown on Si substrates of any orientation. Refer to Figure 2-7.)"*% The valence
band offset can be determined with what Van De Walle calls model solid theory” in
which positions of the average energy (E,, A,) of the valence bands are found on an
absolute scale. For unstrained materials, the valence band offset is determined by finding
the energy difference between the heavy-hole levels of the well and barrier materials
which are shifted up from the average band energy by A,/3 and A,/3 respectively as

shown in Figure 3-7. In the strained case, the heavy-hole energy level in
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Figure 3-7. Band offsets for any growth direction at a Si/SiGe interface for strained and
unstrained case. V., represents the quantum well depth for the heavy hole band.
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the alloy layer is shifted up by a mixture of both spin-orbit and strain effects. The
amount of shift is determined by the zone center (k=0) eigenvalues of the combined spin-
orbit and strain Hamiltonians. The band offset is then determined as before, by the
difference between the heavy-hole energies. The band offset is included in the total 6 x 6

Hamiltonian describing the heterostructure by adding a matrix of the form

(3-30)

offset

S O = O O O
O = O O O O
_— O O O O O

S O O O O =
S O O O = O
S O O = O O

where the common convention is to set V equal to 0 in the barrier and V to V 4, in the

well. The form of this term is identical for any growth direction. The total Hamiltonian

is now expressed as follows.
H

= HO +H +Hso +Hstrain + Hoffset (3'31)

total kep
If the kinetic energy of the holes in the z direction is less than V g, then the holes
become bound in the direction normal to the growth axis. However, their motion in the
plane of the wells remains free. As a result, the energy eigenfunctions of the holes in the

coordinate representation are given by a triple product which includes the following: (a)
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the cell periodic Bloch part which describes the diffraction of the carriers by the periodic
potential of the crystal, (b) a two-dimensional plane wave describing the motion in the x-
y plane, and (c) a bound state wavefunction in the z direction normal to the MQWs.

Using envelope function theory, discussed more completely in Section E,
eigenvalues and eigenfunctions of the total Hamiltonian, H,,,, given by Eq 3-31 are
determined by first computing the bulk eigenstates |A k),, and |A k), in the well and barrier
regions. The states |A k),, and |A k), are six-fold degenerate zeroth order (zone center)
eigenstates of the total Hamiltonian determined by diagonalizing H,,,, using parameters
suitable for the barrier and well regions respectively. The label A identifies the
eigenstates as heavy hole, light hole and split-off. The coordinate representation of the
barrier and well eigenstates together with their first derivatives are then matched at the
heterojunction interface. The process of matching the zero order eigenfunctions and their
derivatives mixes the corresponding heavy hole, light hole and split-off eigenfunctions.

A successful match at the heterojunction occurs for discrete values of the total energy
providing dispersion relations for each of these energies that are parameterized by k.

A simpler approach that works well for the [001] and [111] direction (but not for
the [110] direction is to evaluate H, ,, at zone center (k=0) to obtain the zone center
energy levels of the barrier and well regions as illustrated by the strained case in Figure 3-
7. This gives rise to a heavy hole, light hole, and split-off square well depth, V,,
determined by the difference between the heavy hole, light hole, and split-off energy

levels in the barrier and well regions. Using the dispersion relations of H,,,, in the well
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region, the effective masses m,” in the z direction are determined and used together with

V, in the 1-D square well Schrodinger equation,

—1* 0*¥(2)
2m, 0z’

+V,(2)¥(z) = E, ¥(2) (3-32)

to compute a zone center approximation to the dispersion relations determined by the
EFA. To solve equation 3-32 a plane wave solution to Schrodinger’s equation 1s
assumed in the barrier and well region, and boundary conditions are satisfied using the
standard approach outlined in many quantum mechanics texts.”' Discrete bound states in
the well are obtained for hole energies less than V,, and hole energies greater than V,
correspond to a continuum of unbound states. Eigenvalues, E, in Eq 3-32, are obtained
by finding the roots of a transcendental equation. Graphical solutions for the heavy hole
band of a Si/Si, ;,Ge, 5, quantum well structure where the well width, L, is 30 A are
illustrated in Figure 3-8. Energy eigenvalues correspond to points of intersection labeled
with open circles and can be found numerically with a root finder routine.* The energy
levels for the light hole band and split-off band are found in a similar fashion. Using the
points of intersection as the zone center energies, a simple energy level diagram is shown
in Figure 3-9 to illustrate the relative positions of the energies for each of the zone center
bands. Extensive tables have been compiled for positions of the bound state energies for
both Sif001] and Si[110] substrates and are presented in Appendix C. The results of this

simple calculation for the [001]growth direction agrees very well with previously

3-37




m*sqrt{(V,, /E)-1] !

b
heavy hole 1
@ 4 ble 2
S 2
£
© —— E (meV)

0.1 0.15 0.2 0.25

tan[sqri[m*E/2#2]]L (eV)

Figure 3-8. Graphical representation of solutions to the 1-D Schrodinger equation for the
heavy hole band of a Si[001]/Si,,,Ge, 3, MQW with a well width of 30 A,

published results and with results obtained through the more sophisticated envelope
function approximation in Section E.”*” Calculations using a simple QW model for the
[110] growth direction have not been previously published. However they do not
compare well with the envelope function approximation calculation. The reason that the
simple approximation works well at low Ge concentrations for the [001] material and
does not work well for [110] material is explained by considering the matrix elements of
the k-p Hamiltonian (Eq 3-23) for each structure. The o,  and D terms determine the
amount of band coupling. When k, and k| are set to zero at the center of the BZ, o and 8
are zero for the [001] growth direction and D is a function of k,. As a result, the heavy
hole band is completely decoupled from light hole and split-off bands which are

themselves only weakly coupled. Consequently, the simple approximation is relatively
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Figure 3-9. Schematic diagram of bound state energy levels in a Si[001]/Si, ,,Ge, ,, MQW
with a well width of 30 A. Energies are determined using a simple quantum well model.

good for [001] material until increasing strain forces a stronger coupling. Now consider
the o and B terms for the [110] case. When k, and k, are set to zero at the center of the
BZ, o still goes to zero but 3 does not. As a result, all the bands are coupled at zone
center, and the simple approximation is a poor one. A comparison of the data for the
uncoupled band and envelope function approximations will be given after the

development of the envelope function approximation. (see Section G.)
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E. Envelope Function Approximation

1. Background.

The envelope function approximation (EFA) provides a more sophisticated
treatment of the zone center quantum well energies when compared with the simple
quantum well analysis discussed in the previous section. Furthermore, the EFA may also
be used to compute quantum well energies away from zone center. This give rise to a
series of dispersion relations, E = E\(k;), where the continuous label k; identifies the hole
momentum in the plane of the quantum well, and the discrete index N labels energies that
correspond to bound hole states in the growth direction.

The EFA proceeds by first determining the bulk eigenstates of the well and barrier

regions using the approach outlined in the previous sections where

k)= Y| jm k) jm k|2k)
jm
(3-33)
=3 A% (K] jm k)
}m

In Eq 3-33, heavy, light and split-off hole states are labeled by A = hh, 1h, and so, and the

| mKk) are the basis vectors used to obtain the initial 6 x 6 representation of the total
Hamiltonian given by Eq 3-23. The expansion coefficients A”j’m(k) are determined by
diagonalizing the bulk Hamiltonian given by Eq 3-23 using appropriate physical
parameters for the barrier and well regions. A more complete notation for the bulk

eigenstates in Eq 3-33 should include an extra label that distinguishes between the barrier
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and well solutions, however, for notational clarity this label has been omitted. The

coordinate representation of the |Ak) is given by,

xlk(r) = <r\?uk>

= 2 AL (K)(r| jmk)
o (3-34)
= explik -1} 2, A}, (K)uy,(r)

= exp{ik -r}u,,(r)

where the u,,(r) are the cell periodic parts of the Bloch functions at zone center. Since
the u;,,(r) are degenerate zone center eigenvectors of H, as defined by Eq 3-8, the u,(r)
given by the linear combination in Eq 3-33 are also degenerate zone center eigenvectors
of H,.

Another degeneracy exhibited by the |A k) is illustrated in Figure 3-10 by drawing
a horizontal line corresponding to a particular energy, E, and identifying its intercept with
the hh, 1h, and so bands. Vertical lines drawn through these intercepts will identify six
values of k,=k,,, each labeled by the band index A. Thus, for a given value of energy E,
there are six degenerate bulk eigenvectors, |A, £k, K, ) and where the momentum label k
has been explicitly separated into a component labeling momentum in the growth
direction, tk,, and components labeling momentum parallel to the quantum well, k. An
essential point concerning this set of six-fold degenerate states is that for a fixed va<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>